Silicon Insertion into Boranes: A Rational Synthetic Route to Silicon-Containing Heteroboranes

Joel A. Dopke, Adam N. Bridges, Matthew R. Schmidt, and Donald F. Gaines*

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706

Received April 30, 1996

While carboranes are well-known and well-studied,¹ the analogous silicon compounds have only recently been prepared.^{2–6} Recent investigations of heteroatom insertion into decaborane using the reactive dianion *nido*-B₁₀H₁₂^{2–} in our laboratories have led to the insertion of a –CH cluster fragment from X₂CH₂ (X = halogen)⁷ to produce the monocarborane, 7-H-7-CB₁₀H₁₂⁻. We now report the analogous monosilaborane anions, 7-R-7-SiB₁₀H₁₂⁻ (R = H, Me, Ph) by insertion of an -SiR unit from HRSiCl₂ into the *nido*-B₁₀H₁₂^{2–} framework.

The silaboranes, $7\text{-}R\text{-}7\text{-}SiB_{10}H_{12}^{-}$, are consistently formed in a 2:1 ratio with decaborane(14), regardless of the R substituent, according to eq 1. Subsequent washing with *i*-Pr₂O

$$3Na_{2}[B_{10}H_{12}] + 2HRSiCl_{2} \rightarrow$$
$$2Na[RSiB_{10}H_{12}] + B_{10}H_{14} + 4NaCl$$

$$\mathbf{R} = \mathbf{H}, \, \mathbf{M}\mathbf{e}, \, \mathbf{P}\mathbf{h} \tag{1}$$

to remove decaborane and filtration to remove NaCl result in a near-quantitative yield of 7-R-7-SiB₁₀H₁₂⁻ based on the observed stoichiometry. The silaboranes are isolated as free-flowing, air and moisture sensitive, off-white solids that slowly decompose to decaborane and the arachno anion, $B_{10}H_{15}^-$ (based on ¹¹B NMR).⁸ Dissolution of the silaborane salts in THF, polyethers, acetonitrile, or diethyl ether (in which they are moderately soluble) produces yellow to orange solutions. Not surprisingly, sodium salts of 7-R-7-SiB₁₀H₁₂⁻ exhibit enhanced solubility when R = Me or Ph.

Although no intermediates in the synthesis of the silaborane anions have been observed, the mechanism of insertion may be envisaged to proceed via successive loss of chloride by the halosilane, formation of three-center, two-electron bonds between silicon and facial $B_{10}H_{12}^{2-}$ borons, and deprotonation of the silyl fragment (Scheme 1). Following loss of chloride, the halosilane fragment is postulated to initially occupy a bridging position to form a μ -HRSiCl- $B_{10}H_{12}^{-}$ species. Subsequent loss

- For examples, please see: Gmelin Handbook of Inorganic Chemistry, Boron, 8th ed., 3rd Supplement; Springer Verlag: New York, 1988; Vol. 4.
- (2) Loffredo, R. E.; Norman, A. D. Inorg. Nucl. Chem. Lett. 1977, 13, 599. Loffredo, R. E.; Norman, A. D. J. Am. Chem. Soc. 1971, 93, 5587.
- (3) Wesemann, L.; Englert, U.; Seyferth, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 2236.
- (4) Wesemann, L.; Englert, U. Angew. Chem., Int. Ed. Engl. 1995, 35, 527.
- (5) Seyferth, D.; Büchner, K.; Rees, W. S.; Davis, W. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 918.
- (6) Wesemann, L.; Ganter, B. Organometallics 1996, 15, 2569.
- (7) Bridges, A. N.; Gaines, D. F. Inorg. Chem. 1995, 34, 4523.
- (8) In a typical synthesis of 7-H-7-SiB₁₀H₁₂[−], a solution of Na₂[B₁₀H₁₂] (6.34 mmol) in THF⁷ is prepared and degassed in a 100 mL high-vacuum reactor with a magnetic stir bar. The THF is removed in vacuo and ~20 mL of dry diethyl ether is distilled into the vessel at −196 °C. Excess H₂SiCl₂ (purified by repeated fractional condensation at −126 °C to remove HCl) is then condensed into the vessel (14.3 mmol) at −196 °C. A −78 °C bath is then placed around the reactor, and the system is allowed to stir and warm to room temperature overnight. The volatiles are removed in vacuo and discarded. The crude product is washed with 3 × 15 mL portions of dry *i*-Pr₂O. The solid is then extracted with dry THF and the filtrate evaporated under vacuum to yield 1.19 g (4.44 mmol, 70% yield) of Na[SiB₁₀H₁₃].

Scheme 1

of the remaining chloride allows the formation of a second intermediate, μ_2 -HRSi-B₁₀H₁₂, perhaps similar in structure to those group IV heteroboranes described by Norman and coworkers.² Proton abstraction by B₁₀H₁₂²⁻ or B₁₀H₁₃⁻ leads to full insertion of the silicon atom.⁹ Deprotonation of μ_2 -HRSi-B₁₀H₁₂ by B₁₀H₁₃⁻ and B₁₀H₁₂²⁻ is implied by the presence and statistical quantity of decaborane in the product mixture, and is indicative of the high acidity of the silyl proton.

The ¹¹B NMR spectrum of 7-H-7-SiB₁₀H₁₂⁻ consists of six doublets of relative intensity 1:2:2:2:2:1. All signals collapse to singlets upon proton decoupling, in good agreement with that expected for an 11-vertex, 10-boron structure possessing C_s symmetry (Figure 1). Boron chemical shift data for the species 7-R-7-SiB₁₀H₁₂⁻ (R = H, Me, Ph) and the monocarborane, 7-H-7-CB₁₀H₁₂⁻, are summarized in Table 1. All expected couplings are present in the two-dimensional ¹¹B-¹¹B COSY NMR spectrum of 7-H-7-SiB₁₀H₁₂⁻, allowing cluster connectivities and assignments to be made. No conclusive evidence for a B8(B11)-B9(B10) coupling is observed, consistent with the proposed presence of bridging hydrogens spanning these connectivities⁹ (the anion, 7-Me-7-SiB₁₀H₁₂⁻, has been crystallographically characterized by Wesemann et al.³).

The ²⁹Si NMR spectrum of 7-H-7-SiB₁₀H₁₂⁻ shows a broad doublet centered at -41.7 ppm ($J_{Si-H} = 242$ Hz). This compares favorably with the reported 29 Si resonance of -36.4ppm reported³ for 7-Me-7-SiB₁₀ H_{12}^{-} . The signal collapses to a broad singlet ($\Delta w_{1/2} = 142$ Hz) upon proton decoupling and exhibits no resolvable coupling to cage borons. The terminal Si-H proton is not observed in the ¹H NMR spectrum but emerges as a broad singlet ($\delta = 2.46$ ppm relative to TMS) when ¹¹B decoupling is applied. The two bridging hydrogens spanning B8(B11)-B9(B10) are observed as a broad singlet at -5.55 ppm while terminal hydrogens on boron occupy a region between 0.96 and 1.95 ppm. Electrospray ionization (ESI) mass spectra of 7-H-7-SiB₁₀ H_{12}^{-} in acetonitrile, in the negative ion mode, exhibit a parent mass envelope centered at m/z 149.2, and an isotope pattern in good agreement with the calculated parent (7-H-7-SiB₁₀H₁₂⁻: m/z 149.172).

⁽⁹⁾ As per Wade's rules: Wade, K. Electron Deficient Compounds; Meredith Corporation: New York, 1971.

⁽¹⁰⁾ Gaines, D. F.; Edvenson, G. M.; Hill, T. G.; Adams, B. R. Inorg. Chem. 1987, 26, 1813.

Table 1. ¹¹B Chemical Shifts and Couplings of the Silaboranes in THF, with All Shifts Referenced Externally to BF_3 ·OEt₂ in C₆D₆ and J_{B-H} (in Hz) Given Below the Appropriate Shift

species	B5	B2/B3	B8/B11	B 9/10	B4/6	B1
7-H-7-SiB ₁₀ H ₁₂ -	-7.1	-14.7	-19.4	-21.6	-24.4	-29.4
	134	138	141	139	141	139
7-Me-7-SiB ₁₀ H_{12}^{-a}	-12.5	-14.7	-22.1	-23.8	-25.2	-32.7
	132	139	141	149	137	141
7-Ph-7-SiB10H12-	-11.5	-14.8	-22.0	-23.6	-25.7	-31.9
	134	139	146	144	141	136
7-H-7-CB ₁₀ H ₁₂ ⁻	-0.3	-11.6	-11.6	-22.7	-31.0	-26.1
	127	142	137	157	127	142

^{a 11}B chemical shifts in good agreement with published data.³

The 7-Me-7-SiB₁₀H₁₂⁻ anion was identified by comparison of its ¹¹B and ²⁹Si NMR spectra to literature values³ and its ESI mass spectrum (7-Me-7-SiB₁₀H₁₂⁻: m/z 163.6). The silaborane 7-Ph-7-SiB₁₀H₁₂⁻ has been characterized on the basis of its ¹¹B/¹¹B{¹H} NMR spectra, found to be characteristic of the silaborane anions.

There are small variations in the ¹¹B chemical shifts for cluster borons of the silaborane anions as the substituent group on the silicon changes. The chemical shifts of the methyl- and phenylsilaborane derivatives appear at higher field than those of 7-H-7-SiB₁₀H₁₂⁻, likely due to the increased electrondonating ability of the R group compared to hydrogen. An antipodal effect due to the electropositive silicon atom and its substituent is most pronounced at the B1 and B5 positions. The parent silaborane, 7-H-7-SiB₁₀H₁₂⁻, and the monocarborane, 7-H-7-CB₁₀H₁₂⁻, exhibit large differences in their ¹¹B chemical shifts, likely a reflection of the difference between carbon and the more electropositive silicon (in reference to boron). Large upfield shifts of the B1 and B5 resonances accompany the change from carbon to silicon. Boron vertices adjacent to the heteroatom (B2, B3, B8, B11) exhibit significant deshielding in the monocarborane when compared to the silaborane, although this effect is less pronounced for B2 and B3. The B4(B6) resonance of 7-H-7-SiB₁₀H₁₂⁻ appears downfield of that for 7-H-7-CB₁₀H₁₂⁻, while the B9(B10) resonances remain comparable.

The electropositivity of silicon in relation to boron may lend credence to the instability of the cluster. It is logical to assume that the silicon vertex would adopt a positive charge relative to the rest of the cluster. Wesemann et al. initially prepared 7-Me-7-SiB₁₀ H_{12}^{-} by nucleophilic degradation of the *closo* disilaborane 1,2-Me₂-1,2-Si₂B₁₀H₁₀ with hydroxide indicating that even in a closo configuration, silicon vertices are attacked preferentially by nucleophiles.³ The open-faced, 11-vertex structure of the silaborane anions may expose the heteroatom even further to nucleophilic attack. Samples of 7-H-7-SiB₁₀ H_{12}^{-} treated with \sim 1 equiv. of NaHBEt₃ in THF decomposed to give a mixture of $B_{10}H_{14}^{2-}$ and $B_{10}H_{10}^{2-}$. While the silicon-containing byproduct was not identified, the degradation products suggest nucleophilic attack by hydride at silicon. Coordinating solvents may stabilize the positive charge on silicon, suggested by the observed long lifetime of 7-H-7-SiB₁₀ H_{12}^{-} in acetonitrile.

Insertion of an -SiR unit to generate 7-R-7-SiB₁₀H₁₂⁻ has several advantages over the previously published synthesis³ of 7-Me-7-SiB₁₀H₁₂⁻. The nature of the substituent, R, appears to be limited only by the synthetic availability of the appropriate dihalosilane whereas the previous method limits the R moiety to methyl. Precursors for the insertion pathway can be made and purified in high yield, and the insertion reaction also proceeds in high yield. Continued investigations of group IV heteroatom insertion reactions with boron hydride anions are in progress.

Acknowledgment. We thank the U.W. Graduate Research Committee and the National Science Foundation for a variety of partial funding in support of major departmental instrumentation and for partial research support including NSF Grants DMR-9121074 and CHE-9305922.

Supporting Information Available: Figures showing NMR data (¹¹B, ²⁹Si, ²⁹Si, ¹⁹H}, and two-dimensional ¹¹B-¹¹B COSY) and ESI mass spectra for 7-H-7-SiB₁₀H₁₂⁻, and NMR data (¹¹B, ¹¹B{¹H}) for 7-Ph-7-SiB₁₀H₁₂⁻ are available (6 pages). Ordering information is given on any current masthead page.

IC960474S